
Socially-Aware Robot Navigation
David Betancourt

School of Computational Science & Engrg.
Georgia Institute of Technology

david.betancourt@gatech.edu

Nithin Shrivatsav Srikanth
Georgia Institute of Technology

nithinshri@gatech.edu

Kapil Vuthoo
School of Computer Science

Georgia Institute of Technology
kapilv@gatech.edu

Abstract—Socially-aware navigation is an important aspect
of Human-Robot interaction that is gaining popularity in the
research community. Deep reinforcement learning is a frame-
work which looks promising to solve the problem of socially-
aware navigation in a way where we can generalize to dif-
ferent crowds without hand-coded rules, by modeling pairwise
interaction features between humans-robot and human-human
and constructing a crowd state representation vector. We show
that our reinforcement learning algorithm performs better than
other recently released algorithms in simulation space. For the
robot implementation in Turtlebot2, the reinforcement learning
algorithms resulted in actions which did not correspond to
the current state. Nonetheless, a separate non-reinforcement
learning algorithm for socially-aware navigation was successfully
implemented in Turtlebot and tested with humans.

Index Terms—HRI, social navigation, Deep Reinforcement
Learning, Turtlebot2

I. INTRODUCTION

The main motivation behind this project is to learn about
mobile robot navigation algorithms in environments crowded
by pedestrians. In these situations, we need to make use of
concepts from the field of human-robot interaction and enable
the robots to respect the social norms of humans.
Today, an increasing number of mobile robots are being
built to interact with humans which will naturally result in
the development of autonomous navigation algorithms that
consider social norms to avoid collisions. Enabling robots to
follow social conventions will guarantee the comfort of the
surrounding humans and will in turn ensure that the humans
can also infer the robot’s intentions. This can be dealt with
using a reaction-based or a trajectory-based approach. The
reaction-based approach uses a reciprocal velocity obstacle—
a reaction based method that adjusts each agent’s velocity
vector to ensure collision-free navigation. However, it does
not consider evolution of the neighboring agents’ future states,
they are short-sighted in time and have been found to cre-
ate oscillatory and unnatural behaviors in certain situations.
In contrast, trajectory-based methods explicitly account for
evolution of the joint (agent and neighbors) future states by
anticipating other agents’ motion. For this project we have de-
cided to explore the later and use deep reinforcement learning
algorithms to teach robots to follow social conventions and
carry out human-aware navigation. Some common examples
of social norms are passing on the right side of a pedestrian,
over-taking a pedestrian on the left side, and not crossing a
queue if there is space to bypass it. This type of navigation

would be the focus of this class project and we believe it
would be interesting to learn how to model the navigation of
robots with the additional social enhancements that we have
learned in class.

II. RELATED WORK

A few recent methodologies to develop socially-aware navi-
gation algorithms for ground robots have been published. One
approach [6], [7] decouples perception and planning such that
the robot uses two different algorithms for each task. This
approach has led into a problem known as the freezing robot
problem, where the robot cannot find an optimal path. An
enhanced approach stems from considering the instantaneous
cooperation that occurs to avoid collisions in human-to-human
interactions, which some researchers seek to adapt to this HRI
task. In particular, recent work [2]–[4] uses deep reinforcement
learning with reward shaping in a game theoretic setting to
minimize the number of collisions with humans. In such
reinforcement learning setting, rewards account for the social
norms and are shaped (biased) to account for cultural-specific
behavior, like passing on the right. Our initial algorithm was
based on the seminal work of [2], [3]. However, other recent
approaches subsumed this work and in addition better handle
crowd-robot interaction (CRI) by also modeling human-human
interactions with multiple agents [1], [5]. In particular, the
work in [1] explicitly models the crowd dynamics using a
deep neural network with an attention mechanism.

III. BACKGROUND

a) MPDs and POMDPs: A Markov Decision Process
(MDP) is a model for sequential decision-making and
planning, and is a paradigm regularly used in robot
motion [10]. MDP’s assume that the state of the environment
is fully observable to the agent. In most real-world
applications, the Markov Property in MDPs does not hold
because the agent cannot observe the full state of the
environment. When this happens, the MPD becomes a
Partially Observable Markov Decision (POMDP) and the
agent only receives observations o ∈ Z , instead of complete
states s ∈ S . A POMDP is defined by the following
experience tuple {S,A, T ,R,Z,O}. At each time step t, the
environment is in state st ∈ S, and the agent takes an action
at ∈ A according to a policy πππ : O × A 7→ [0, 1], which
causes the environment to transition to the new state st+1

according to the transition function T : S × A. The agent



then receives an observation ot ∈ Z , which depends on the
new state of the environment with probability O(ot|st+1, at).
The agent then receives rewards according to its actions and
the state r : S × A 7→ <. In MDPs and POMDPs, the goal
of the agent is to maximize the expected future cumulative
discounted rewards R = E

(∑T
t=0 r

tγt
)
, where γ is the

discount factor.

b) Value Iteration Networks: The value of a state s
following a policy πππ is V πππ(s) = Ea∼πππ

[∑∞
t=0 r(s, a)γ

]
.

The optimal value function V ∗(s) is the maximal expected
return from a state s, which equals maxπππ V

πππ(s). A policy
is optimal (πππ∗) if V πππ

∗
(s) = V ∗(s). Value Iteration is an

algorithm which allows to calculate V ∗(s) and πππ∗. In a value
iteration network, the value function is evaluated by a deep
neural network.

c) Prioritized Experience Replay: Prioritized experience
replay (PER) developed in [9], uses the Temporal-Difference
(TD) error and importance sampling to prioritize the order in
which experiences are replayed by the RL agent. The work
in [9] outperformed previous deep RL implementations, with
uniform experience replay, in almost all the games in the Atari
benchmark.

IV. METHODOLOGY

A. Main Algorithm

We adopted the algorithm of [1] and enhanced it
by modifying the way that the RL agent samples past
experiences. The algorithm consists of using value iteration
initialized with demonstrations. The algorithm, SARL, seeks
to model the relative importance of humans and encode the
collective impact of the crowd. The multi-agent framework
of SARL is composed of three modules, as follows:

a) Interaction Module: This module embeds the motion
information of each of the agents (humans and robot) with
respect to their neighbors. This is achieved by constructing a
neighborhood map of size L × L × 3 around each human i,
which encodes the velocities of existing neighbors, as

Mi(α, β) =
∑
j∈Qi

1[(∆x,∆y) = (α, β)]shj (1)

Where (α, β) are the cell’s coordinates; (∆x,∆y) are the
difference in planar coordinates between humans i and j; Qi
is the set of neighboring humans around the ith human; shj
is the local state vector for human j; and 1[·] is the indicator
function.

For each human i the state is a 7-tuple, defined as sh,(t)i =
[px, py, vx, vy, ri, di, ri + r](t), where p are positions, v are
velocities, r are radii, and d separation distance at time
t. For the robot, the state is a 5-tuple, defined as s(t) =
[dg, vpref , vx, vy, r]

(t); where dg is distance to goal, vpref
is preferred velocity, v are velocities, and r is the radius at
time r. The embedding of the state of the robot s, the states

of humans shi , and neighborhoods maps Mi, into a high-
dimensional tensor ei is achieved with a neural network Φe
parameterized by Θe, as

ei = Φe(s, s
h
i ,Mi; Θe) (2)

Finally, the embedding vector ei is then trained end-to-end
with a deep neural network Ψh parameterized by Θh giving
the pair-wise interaction hi between the robot and human i,
as

hi = Ψh(ei; Θh) (3)

b) Pooling Module: In order to handle crowds of varying
sizes, the pooling module allows the network to process an
arbitrary number of inputs into a fixed-sized output action
space. To this end, SARL uses an attention mechanism in
order to learn the relative importance of each neighbor, as
well as the collective force of the crowd. The attention score
is achieved through hidden layers with ReLu activations Ψα,
parameterized by Θα, as follows

αi = Ψα(ei, em; Θα) (4)

Where ei is defined in Eq. 2 and em = 1
n

∑n
k=1 ek. Then,

the final representation of the crowd is given by c, as

c =

n∑
i=1

softmax(αi)hi (5)

Where hi is defined in Eq. 3.

Fig. 1. Pooling Module Architecture from [1].

c) Planning Module: Using the compact representation
of the crowd c, the planning module estimates the state value
V for cooperative planning, parameterized by ΘV , as

V = fV (s, c; ΘV ) (6)

1) Model Details: The hidden units of the network func-
tions are as follows: Φe = (150, 100); Ψh = (100, 50); Ψα =
(100, 100); fV = (150, 100, 100).



2) Reward Function: The reward function is defined as
follows:

Rt(s
joint
t , at) =


−0.25 if dt < 0

−0.1 + dt/2 elif dt < 0.2

1 elif pt = pg

0 otherwise.

Where dt is the minimum separation distance between the
robot and the crowd during each time interval.

3) Training Details: We implemented prioritized experi-
ence replay (PER) [9] as an algorithmic enhancement for [1]
and also implemented reward shaping as in [3]. Adding PER
reduces the training time significantly and we noticed that
surprisingly none of the algorithms in the literature used PER,
but rather only sampled uniformly from the experience buffer.
Additionally, PER helps to infer the POMDP hidden states in
our setting—the intentions of humans. The model is trained
in PyTorch using Adam with a mini-batch size of 32. The
learning rate for imitation learning is 0.01 and 0.001 for RL.
The action space contains 80 actions (5 speeds exponentially
spaced between (0,vpref ] and 16 headings evenly spaced
between [0,2π).

B. Secondary Algorithm

We also implemented and tested the algorithm of [8] and
successfully implemented it on TurtleBot2. The algorithm is a
planning-based approach to address the problem of socially-
aware navigation. It proceeds by making use of a layered
social cost function to generate collision-free paths. Some of
the social norms hard-coded in the robot are avoiding the
personal space of humans, waiting for a human to pass and
moving out of the way when blocking a human’s path. The
algorithm involves the use of time-dependent, search-based
path planning with dynamic, social cost maps containing
costs based on predicted human trajectories and Gaussian
social cost model. One of the main reasons for choosing this
algorithm as an alternative is its ability to consider motion of
humans over time. We tested this algorithm on Turtlebot in a
narrow and cluttered environment. The navigation framework
consists of the following modules.

a) Search Graph: To generate robot trajectories that are
feasible and take into account the robot’s inertial constraints,
the state space is modeled in the following way:

C = (x, y, φ, v, ω, t)

—this corresponds to the unicycle model of the robot. Then,
a discrete time model with a constant sampling time (∆t)
and a finite set of directly executable actions ui is used
to build the Search Graph. The action set is as follows:
U = {(exax, eφaφ)|ex, eφ ∈ {−1, 0, 1}}. The actions are a
combination of forward and angular accelerations resulting
in motions which can have constant acceleration, constant

deceleration or zero acceleration. This set of state space and
actions ensures the generation of feasible motions through
the use of a feasibility tree.

b) Social Cost Model: The social space preference of
humans can be modeled using either potential functions or
social costs and this approach makes use of a Gaussian cost
model with an amplitude A and σx,σy along the person’s
front and side directions. To induce the social norm of moving
the robot on the right side of the human and preventing it
from moving in the sensitive area in front of the person,
the Gaussian distribution is perturbed from the person’s
geometric center by a small value. In addition, to respect the
proxemics of the person, a non-traversable area of radius r0
is created around the person.

c) Dynamic Cost Map: A layered dynamic cost map
encodes the static environment constraints with the dynamic
social constraints where each layer represents one snapshot
of the predicted human-trajectory from time-step i to i + 1.
The cost map has a single static layer and multiple dynamic
layers with each layer being a two-dimensional grid that
represents the navigation constraints of the robot.

d) Optimization: The parameters being optimized in the
A∗ search algorithm are path execution time, path length,
static environment constraints and social constraints with each
parameter being represented by a cost ci. Each of these costs
are described below:
• Path execution time is proportional to the required time-

steps to reach goal.
• The path length cost function is a function of the linear

and diagonal transitions associated with a planned path
in the cost map grid.

• The static environment and social constraints cost func-
tion is obtained from the dynamic cost map according to
the grid cell that the path traverses.

The Cost Function is as follows:

C = Σwi.ci (7)

e) A∗ Heuristic: This paragraph describes the robot’s
behavior when no people are around. To generate the shortest
path of the robot a planar eight-connected Dijkstra expansion
is imposed on the static layer of dynamic cost map.

f) Planning Timeout: To ensure that the planning fre-
quency is constant the time allocated for planning is restricted.
Once the maximum planning time is reached, the algorithm
returns the path to the best expanded state which can be the
goal state in an ideal scenario. If the goal was not reached, the
algorithm returns the lowest cost path that reached the goal at
any orientation and velocity or expand the path to the state
that would be expanded next.

1) Model Details: The local map for TurtleBot2 is gener-
ated using Simultaneous Localization and Mapping technique



by leveraging the gmapping package of Robot Operating
System(ROS). The GMapping algorithm makes use of Rao-
Blackwellized particle filters to learn grid maps and localize
the robot.

C. TurtleBot Implementation

We started with programming the turtlebot for normal
navigation using all the sensors and built in utilities in ROS
like navstack and rviz for local and the global planner. To
prepare the turtlebot for addition of deep learning algorithms,
we integrated the object detection for collision avoidance and
subsequently added people detection. Further, the CADRL and
SARL algorithms were trained and the trained model put on
the tutlebot.

As discussed in the above sections a non-communicating
multiagent collision avoidance problem can be formulated as
a partially-observable sequential decision making problem. In
this implementation the agent’s state vector is a combination
of two parts: st = [sot ; s

h
t ] where sot denotes the observable

part that can be measured by all other agents, and sht denotes
the hidden part that is only known to the agent itself. Each
part of the state vector is a further combination of p -
position, v - velocity , r - radius and ha - heading angle.
so = [px, py, vx, vy, r] s

h = [pgx, pgy, vpref , ha]
We took the origin as the start point of the robot in the

map and then by subscribing to Odometry we got the position
coordinates to this origin in 2D. Own velocity was being pub-
lished to cmd vel, therefore known and for the moving people
(Agents) the position and velocity is calculated from the lidar
data. Further, the heading was also taken from Odom data.
Because of the mismatch of the training data and the expected
data, the inference engine was not generating proper velocity
commands. We tweeked and tried many combinations of the
state vectors and the paper [1] is also silent about physical
implementation as against using the gym environment.

a) Implementation Details: Throughout the entire project
ROS was a very important ingredient. ROS stands for Robot
Operating System and is a meta operating system for writing
modular robot software. The modularity and powerful com-
munication capabilities of ROS allowed us to create such a
complex task in a simple manner.

The TurtleBot2 was abstracted as a unicycle model to
pass the motion commands for navigation. The TurtleBot2 is
equipped with ASUS Xtion Pro sensor which is an RGB-
D sensor but is used as a Lidar for our application. This
sensor is based in primesense infra-red technology. The sensor
outputs data in the form of a laserscan which is a linear vector
of ranges from the robot to the nearest obstacle in various
directions. A ROS node extracts the middle few rows of the
Asus Xtion Pro’s depth image and filters the output to generate
data similar to the data from a Lidar.

The TurtleBot2 is built on a Kobuki mobile base which
works on differential drive mechanism. The base has sensors
such as wheel encoders and gyroscope, actuators for move-
ment and a power source. The sensors of the robot are used in
generating the odometry information of the robot such as its

pose. To operate it a Netbook with ROS capabilities is needed
and we have used the ASUS Netbook of TurtleBot2 and this
laptop is configured as a ROS MASTER URI.

The codes were first tested on simulation using Gazebo and
then the codes were ported to hardware. Results of both the
simulation and hardware are attached in the Results section.

The lattice planner ROS package is used as the time-
dependent global planner and timed path follower ROS pack-
age is used for local planning. The lattice planner generates a
path based on A∗ search algorithm for robots with differential
drive constraints. It directly uses the dynamic cost map for
planning the paths of the robot. The timed path follower
provides a trajectory tracking controller in the ROS Navigation
Stack.

To test the behavior of the robot around humans, a fake
detection node is executed in ROS. The navigations goals of
the robot are set in RViz and the robot smoothly navigates to
the desired goal while avoiding humans and following social
constraints.

V. RESULTS

A. Comparison of Algorithms

Table 1 shows the comparisons of the main reinforcement
learning algorithm implemented (SARL) vs two other recent
approaches (CADRL [2] and LSTM-RL [4]) during testing.
For all approaches, the algorithms were trained using pri-
oritized experienced replay, which significantly reduced the
training time (from 20k episodes to 4k episodes). SARL-
PER had the lowest collision rate, while CADRL-PER was
faster. The LSTM-RL-PER algorithm did not perform well,
perhaps, it needed more training episodes but we wanted to
do a comparison with similar training times. Fig. 3 shows the
navigation time and the rewards per episode of training, we
see that CADRL-PER and SARL-PER are very similar during
training, while LSTM-RL is not converging.

TABLE I
COMPARISON OF RL ALGORITHMS

Algorithm Collision Rate Success Rate Time to Goal (sec)

SARL-PER 0.018 0.99 11.23
CADRL-PER 0.054 0.99 10.78
LSTM-RL-PER 0.63 0.58 22.94

B. TurtleBot2 Implementation Results

The RViz visualizations for the TurtleBot navigation in an
environment with humans is depicted in the pictures below.
As seen from the pictures, the navigation of the TurtleBot
is smooth due to the even switching between the various
navigation behaviors represented by the layered cost map.
The re-planning of path takes place when the planned path
conflicts with human motion. The red cylinder around the
human is a restricted radius which the robot will never get
close to. The blue layer around the human represents the
Gaussian distribution with an offset to represent a region of
high potential.



Fig. 2. TurtleBot2 and Unicycle Model

A real-world experiment with the TurtleBot2 was tested for
the condition of moving to the right side of a person and is
depicted in Figure 5.

VI. CONCLUSION

Socially-aware robot navigation research is a subject that
is gaining a lot of attention, due to some immediate needs
where robots must navigate through crowds—i.e., airports,
shopping malls. We conclude that although SARL-PER per-
formed very well in the Gym-AI simulations, it did not work in
Turtlebot. Perhaps, the main reason for this is that SARL and
CARDL were originally implemented with robots that were
not Turtlebot2. Nonetheless, this gave us insight into how to
implement these algorithms in the future, especially as long as
our experience with ROS is not advanced. Thus, for a future
implementation of RL algorithms in ROS, we envision starting
with an algorithm that is already implemented in the same

Fig. 3. Results per Episode of Training
Top: Navigation Time.
Bottom: Reward.

hardware and build from that algorithm to make it suit our
goals. Such workflow is more similar to how we implemented
the secondary non-RL (cost map) algorithm successfully.

ACKNOWLEDGMENT

We wish to thank our professor, Sonia Chernova, and
our Teaching assistant, Siddhartha Banerjee, for providing us
Turtlebot2 and the helpful guidance.

REFERENCES

[1] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. Crowd-
robot interaction: Crowd-aware robot navigation with attention-based
deep reinforcement learning. arXiv preprint arXiv:1809.08835, 2018.

[2] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially
aware motion planning with deep reinforcement learning. In Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International Conference
on, pages 1343–1350. IEEE, 2017.

[3] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decen-
tralized non-communicating multiagent collision avoidance with deep
reinforcement learning. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 285–292. IEEE, 2017.

[4] Michael Everett, Yu Fan Chen, and Jonathan P How. Motion plan-
ning among dynamic, decision-making agents with deep reinforcement
learning. arXiv preprint arXiv:1805.01956, 2018.

[5] Tingxiang Fan, Xinjing Cheng, Jia Pan, Dinesh Monacha, and Ruigang
Yang. Crowdmove: Autonomous mapless navigation in crowded scenar-
ios. arXiv preprint arXiv:1807.07870, 2018.



Fig. 4. Visualizations of the Layered Cost Map Algorithm

[6] Ioannis Karamouzas and Stephen J Guy. Prioritized group navigation
with formation velocity obstacles. In Robotics and Automation (ICRA),
2015 IEEE International Conference on, pages 5983–5989. IEEE, 2015.

[7] Sujeong Kim, Stephen J Guy, Wenxi Liu, Rynson WH Lau, Ming C Lin,
and Dinesh Manocha. Predicting pedestrian trajectories using velocity-
space reasoning. In Algorithmic Foundations of Robotics X, pages 609–
623. Springer, 2013.

[8] M. Kollmitz, K. Hsiao, J. Gaa, and W. Burgard. Time dependent
planning on a layered social cost map for human-aware robot navigation.
In 2015 European Conference on Mobile Robots (ECMR), pages 1–6,
Sept 2015.

[9] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952, 2015.

[10] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
robotics. MIT press, 2005.

Fig. 5. Hardware Implementation


