Deep Recurrent Q-Learning for Partially Observable
Environments using Advantage Prioritized
Experience Replay

David Betancourt
School of Computational Science and Engineering
Georgia Tech
david.betancourt @ gatech.edu

Abstract

This project presents and end-to-end method to train reinforcement learning agents
using deep recurrent networks, while prioritizing the replay memory experiences
with importance sampling. The measure to prioritize the experience is an energy
spectral density combination of the Advantage function and the TD-error. Experi-
ments with the partially observable Atari game Frostbite show that the method
outperforms the DRQN without prioritized experience replay of [2]] and converges
to the optimal policy faster than the state-of-the art for the single-agent case in [7]].

1 Introduction

Significant advances in deep reinforcement learning have been made over the last two years in the
areas of games, natural language, and visual dialog. Deep recurrent Q-networks (DRQN) developed
for partial observability use an RNN on top of CNNs in order to solve Partially Observable Markov
Decision Processes (POMDPs) for the Atari benchmarks [2]. DRQN outperformed the vanilla,
but yet effective, Deep Q-Network (DQN) [6] and human players in games with induceaﬂ partial
observability. However, the DRQN has shortcomings, such as using the same experience replay
heuristics as in DQN, where the experience transitions are sampled uniformly at random from the
experience replay buffer. Such approach has been shown infective in [4] where DQN was investigated
in a multi-agent setting for partially observable Markov Games. A superior sampling approach for
experience replay was presented by [[7] where experiences were replayed for DQN based on the
magnitude of their importance, using Temporal-Difference (T-D) loss and importance sampling.

The goal of this project is to present an end-to-end method to train a neural Q-agent to act in a
partially observable environment but that builds on the shortcomings of [2]], using a new prioritized
importance replay method, similar to the presented in [7] but more adept to POMDPs.

2 Related Work

The most well-known contemporary approach to integrating deep neural networks with reinforcement
learning was developed in [6] and coined as deep Q-Learning (DQN). Other approaches have also
been explored in deep reinforcement learning, such as Policy Gradient and Actor-Critic methods,
which also include deep networks to estimate state-action pairs. All these methods make assumptions
which essentially make them more suitable to solve Markov Decision Processes (MDPs).

'The partial observability in [2] was induced by flickering the screen of the Atari games. This was because in
the DQN of [6] the last 4 frames of the game were taken as state input thereby converting most POMDP games
to MPD.

In the area of POMDPs, the first to develop a deep learning approach was [2]. Their approach
replaced the first fully connected layers used in [[6] with the recurrency of LSTMs in order to capture
the hidden states of the network to estimate the observation probability function.

3 Background

MPDs and POMDPs In most real-world applica- f - \
tions, the Markov Property does not hold because the | opservations. \
agent cannot observe the full state of the environment. N \
When this happens, the MPD becomes a POMDP and .

the agent only receives observations o € Z, instead) W actions
of complete states s € S. A POMDP is defined by .‘L‘]_E 2§

the following experience tuple {S, A, T, R, Z,0}.
At each time step ¢, the environment is in state s; € S,
and the agent takes an action a; € A according to a
policy : O x A — [0, 1], which causes the envi-
ronment to transition to the new state s;4; according
to the transition function 7 : S x A, the agent then receives an observation o; € Z, which depends
on the new state of the environment with probability O(o¢|s:+1,a:). The agent then receives rewards
according to its actions and the state r : S x A —— R. As in MDPs, the goal of the agent is to

maximize the expected future cumulative discounted rewards R = E(Y°/_, 7*7"), where 7 is the
discount factor.

Figure 1: POMDP diagram.

Deep Q Networks (DQN) Q-Learning is a model-free off-policy Temporal-Difference algo-
rithm [9] that estimates the expected future cumulative discounted rewards of an MDP by an
agent that executes an action a; in state s;. Q-Learning uses a value function for policy esti-
mation m as Qr(s,a) = E[R]s,a]. The Q function can be written recursively as Qr(s,a) =

]ES/ [T(S, a) + 'YEa’N‘II‘ [Q‘n‘(s/a a/)]] .

In DQN, the value function is evaluated by a deep neural network.

Double Q-Learning Tabular Q-learning and vanilla DQN implementations tend to over-estimate
the Q values, which is known as the overoptimism problem, because it uses the same network to
select actions a and to compute value function due to the actions. Thus, a common solution employed
for DQN known as Double DQN [[11], is to have two separate networks: one online/current network
selects the actions (i.e. determines the policy), while the other targets network computes the value
function. The Double DQN algorithm is now de rigueur for DQN implementations. Hence, (Double)
DON learns the action-value function @* for the optimal policy by minimizing the following loss:

E(@) - Es,a,r,s’ [(Q*(87 a‘@) - ytarget)2]7 Where ytarget =T + '7 Hila/«x Q(S/, a/|®_)a (1)

where Q is the target value function whose parameters update the value of the new actions selected
by the online network.

Dueling Networks The dueling networks architecture [12] is based on the fact that most deep
RL implementations do not use a specialized deep neural network architecture for RL. The dueling
network architecture has two streams for the value V'(s) and advantage functions A(s, a) to estimate
the Q-values Q(s,a). The advantage function gives a relative measure of the importance of each
action, and is obtained as follows

A(s,a) = Q(s,a) = V(s) 2)

Deep Recurrent Q Networks (DRQN) Deep recurrent Q-networks (DRQN) developed in [2]] use
an LSTM on top of CNNs in order to solve POMDPs for Atari games. DRQN outperformed DQN
and human players in Atari benchmarks with partial observability. Essentially, the deep RNN is
used to extract complex abstractions as temporal data representations. In particular, the Q function
estimates @ (hy, a;), where h; is hidden state determined by the RNN, as hy = RN N (h;_1, 0;). The

RNN can be any recurrent variant, in this paper we choose LSTM in order to match the benchmarks
of previous works [2].

‘C(@) = E<o,h,a,r,o’,h’>[(Q*(ht7a‘e)_ytarget)Q]a where Ytarget = T+ Hlaa,‘XQ(ht+17a/|®_)7
(3)

Visual Attention A attention mechanisms, such as was presented in [5]] for policy gradient methods,
and in [8] for DRQN, are another way to solve the POMDPs.

Experience Replay The DQN implementations of [6,15] and also DRQN of [2] use experience
replay in order to make the agent reuse experiences from past transitions. This helps to solve the
problem of having strongly correlated successive transitions by replaying experiences from a buffer
and also helps the agent replay transitions that might otherwise be forgotten. With experience replay,
the transitions are uniformly randomly sampled from the replay buffer. The problem with this
sampling approach is that important and less important transitions have an equal chance of survival.

Prioritized Experience Replay Prioritized experience replay developed in [7], uses the difference
in Temporal-Difference (TD) error and importance sampling to prioritized the order in which expe-
riences are replayed. The work in [7]] outperformed previous DQN implementations in almost all
the games in the Atari benchmark. This work seeks to implement prioritized experience replay for
a DRQN using a different measure for prioritization than TD, along with a variant of importance
sampling.

4 Methods

4.1 Deep Recurrent Q-Agent for POMDPs

The architecture for the DRQN used in this project is shown in Fig. 2] Essentially, the architecture
of [2f] is taken as a starting point, then the reinforcement learning algorithm is modified to consist
of: (1) double DQN, (2) multi-step bootstrap targets, (3) prioritized experience replay, all within a
(4) dueling network architecture. An attention mechanism that uses all the aforementioned network
enhancement except recurrency, is used for comparison.

4.2 Prioritized Experience Replay with Importance Sampling

The key contribution in this project is developing a prioritized experience replay (PER) method that
performs better than the uniform experience replay used for POMDPs in [2]]. Moreover, the PER
method used in [[7] and even in its recent multi-agent distributed extension [3]] use temporal difference
(TD) error to prioritized the experiences. However, TD error is not a good measure when there is
inherent partial observability and it ignores stochasticity in transitions and/or rewards. Thus, the
proposed measure is to obtain the importance weights by using both the advantage function A(s, a)
and the TD-error §;, and combining both signals in a energy spectral density fashion giving the p
measure as

pt = [%(@ + A(s, a))r 4)

The intuition behind the proposed IS weight measure p is that combining the advantage function
with the TD-error offers for redundancy, for when one or the other might be missed and therefore
not replayed, and replayed more often if they have similar magnitude at the same time step. If the
TD-error measures ‘how surprising® [7]] a transition is, and the advantage function measures the
importance of each action, then the advantage function by itself would seem to give a better measure
for POMDPs.

Moreover, the advantage function and TD-error can be used interchangeably in the gradient estima-
tion of policy gradient methods g = E[> ;> ¥, Vg logmg(at|s;)], where U; can be, among other
functions, the Q function, the advantage function, or the TD-error [3]]. Yet, these functions are not
identical but the advantage function offers the least variance [10, 3]].

Q values

(YY)
Feed-forward
n LSTM 2
. LSTM 1
[
CNN 3

H CNN 2
Screen
Input

Figure 2: Architecture for DRQN ‘OBSQR’ network

4.3 The Agent: Advantage-Prioritized Experience Deep Recurrent Q-Network

The developed reinforcement learning algorithm for this project uses the learning architecture of
Section 4.1 with the experience replay approach of Section4.2] Together, this approach is referred to
as OBSQR.

5 Experiments

5.1 Environments: Atari Games

The OpenAl [1]] is a framework for reinforcement learning research which provides different environ-
ments that provide the ‘world’ abstraction for the RL problem, thus allowing researchers to focus
on developing different new agents. OpenAl also provides a way for the community to benchmark
problems, thus allowing to measure the gains of one’s research. Chief among these environments is
Arcade Learning Environment (ALE), which has a library of Atari 2600 games.

While working on this project, an interesting fact came up about the degree of partial observability
of the Atari games. It was found that out of all 49 games in the Atari suite, the one that presented
the lowest score with DQN [6] was Frostbite—the scores with DQN are almost insignificant.
Indeed, the game which had the highest improvement with the DRQN [2] was Frostbite. Moreover,
the DQN-PER versions [7, [12] showed improvement over uniform-replay DQN’s (all these are
non-recurrent), hence motivating the examination of this game further. In [2] it became necessary to
artificially flicker the screen of several games in an attempt to turn them to an POMDP because they
didn’t have the benefit of hindsight to choose Frostbite. In fact, in [7], a discussion regarding the
measure for importance weight prioritization, led to conclude that possibly the reason that TD-error
performed well was that most games were nearly-deterministic. In addition to finding one interesting
case where to test my proposed method, there were also computing expense considerations to keep
the number of test cases at a minimum. However, for future benchmarking of POMDPs, it will be
necessary to choose a different benchmark where there are more POMDP environments.

5.2 The Agent: OBSQR

The developed agent OBSQR is tested in the Atari Frostbite environment. The experimental set-up
is as follows: The environment provides 10 frames which are processes by the double recurrent
Q-network, with the LSTM layer on top of the DQN convolutional layers, processing the higher-level
abstractions of the input. The training was done to match the parameters from [2]]. The policy and
its evaluation are determined through the online and target networks, respectively. The maximum
number of episodes is 20k and the replay memory has a capacity for 10° samples. The advantage
values are obtained from the dueling network, while the TD-error values are obtained from the
online network. The policy converges at around 7k episodes. The prioritized replay memory was
implemented using the proportional SumTree structure described in [[7].

Figure 3: Game renderings at various stages. Left: First stage, mostly random. Center: Second stage,
learns to jump and not drown. Right: Final stage, learns to get inside the igloo. DQN never discovers
final stage.

5.3 Results

Results for the average reward per episode using OBSQR are shown in this section and compared
with other methods. The results show that OBSQR outperforms not only DQN as expected but also
DROQN [2] and the PER-DQN of [[7]].

Frostbite

—5T 3500

3000 —— DRQN

! 2500 - ' - DQN
Pl 2000
L i 1500
L il 1000
500

o — SRR TR R 1
0 5000 10000 15000

Figure 4: Final Results. Left: OBSQR converges at around 7k episodes for Frostbite for a maximum
average reward of 3451. Right: DRQN from [2] with uniform experience replay converges at around
12k episodes to a lower reward value of 2875

Frostbit
— o AQ00 g« cveerreen e OSbe _________

3200....._._._: AV Ay _________

24004 : j

16004 e _________

300 e
0 T T T

Figure 5: Final Results. Left: OBSQR converges faster than TD-error PER approach from [7]].
TD-error PER approach converges to about the same value but at a lower rate—blue and red lines
are for rank-based and proporsional based-PER, respectively. (each tickmark is 25 hrs, not episodes.
OBSQR reaches convergence in about 20 hrs vs. 50 hrs for [[7]])

6 Conclusions and Future Work

This project showed the great benefit of using importance sampling in deep reinforcement learning
(Prioritized Experience Replay). It allows for better policies and faster convergence, than with uniform
replay memory. Moreover, it shows that for POMDPs, using the combination of the Advantage
function and TD-error helps the agent find the optimal policy faster. Future work should include the
applicability to other POMDP environments and a more specialized network architecture.

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[2] Matthew Hausknecht and Peter Stone. Deep recurrent g-learning for partially observable mdps.
CoRR, abs/1507.06527, 2015.

[3] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

[4] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In Advances in Neural
Information Processing Systems, pages 6382-6393, 2017.

[5] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In
Advances in neural information processing systems, pages 2204-2212, 2014.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[7] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[8] Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, and Anastasiia Ignateva.
Deep attention recurrent g-network. arXiv preprint arXiv:1512.01693, 2015.

[9] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, volume 135.
MIT press Cambridge, 1998.

[10] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057-1063, 2000.

[11] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
g-learning. In AAAI, volume 16, pages 2094-2100, 2016.

[12] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando
De Freitas. Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

	Introduction
	Related Work
	Background
	Methods
	Deep Recurrent Q-Agent for POMDPs
	Prioritized Experience Replay with Importance Sampling
	The Agent: Advantage-Prioritized Experience Deep Recurrent Q-Network

	Experiments
	Environments: Atari Games
	The Agent: OBSQR
	Results

	Conclusions and Future Work

